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ABSTRACT: Synthetic biology is facilitating novel methods and
components to build in vivo and in vitro circuits to better understand
and re-engineer biological networks. Recently, Kim and Winfree have
synthesized a remarkably elegant network of transcriptional oscillators in
vitro using a modular architecture of synthetic gene analogues and a few
enzymes that, in turn, could be used to drive a variety of downstream
circuits and nanodevices. However, these oscillators are sensitive to initial
conditions and downstream load processes. Furthermore, the oscillations
are not sustained since the inherently closed design suffers from enzyme
deactivation, NTP fuel exhaustion, and waste product build up. In this
paper, we show that a partially open architecture in which an 1 adaptive
controller, implemented inside an in silico computer that resides outside
the wet-lab apparatus, can ensure sustained tunable oscillations in two
specific designs of the Kim−Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network
operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our
simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can
be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.
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Systems synthesized from DNA strands in vitro have made
significant progress toward complex architecture with a

predictable outcome.3−6 By utilizing modular and predictable
Watson−Crick base pairing rules as well as the strong catalytic
activity of enzymes, switch motifs with sharp threshold
responses and several circuit motifs have been demonstra-
ted.1,7−9 DNA-based circuits relying on predictable thermody-
namics and kinetics of DNA strand interactions impart
flexibility in synthesizing synthetic biological constructs and
in coupling these circuits to in vivo processes (see refs 10−13
and references therein). For example, a biochemical oscillator
can be successfully synthesized using a simplified experimental
model of gene regulatory networks that utilizes DNA
polymerase, nicking enzyme, and exonuclease to process the
catalytic events.13 In general, however, rendering these
oscillators robust to loading effects arising from coupled
downstream load processes is an important open problem.1,14

In this paper, we propose a solution to this problem for the
specific case of the synthetic Kim−Winfree oscillator network,
illustrated in Figure 1A, which is a simple but effective coupled
oscillator system in which two DNA switches SW12 and SW21

are coupled through activator and inhibitor blocks realized by
RNA signals and auxiliary DNA species.8

We consider two cases: the Kim−Winfree oscillator network
operating in isolation, and the Kim−Winfree oscillator network
driving a DNA tweezer as a variable load process as described in
ref 1. Even in isolation, the oscillator network is not very robust
to the accumulation of interfering RNA waste products such
that the oscillations slow down after each cycle and eventually
ceases to operate due to enzyme inactivation, NTP fuel
exhaustion, and buildup of wastes.8 Further, the amplitudes and
periods of oscillations exhibit limited tunability depending on
the initial parameter choices. In ref 1, these oscillators are used
to drive conformational changes of a DNA nanomechanical
device called DNA tweezers. These tweezers, which consist of
two double-helical domains connected by a hinge, have two
single-stranded hands that can bind to targeted oligonucleotide
sequences such as RNA signal species and auxiliary DNA
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species of the oscillator, thereby closing the tweezers. As Figure
1B,C shows, the oscillations degrade quickly with the amount
of load and the oscillator cannot drive a load exceeding
oscillator component concentrations. In ref 1, the challenge of
reducing retroactivity from loading was addressed by inserting
another DNA switch to amplify the signal to be propagated to
the load process. However, this solution is not adequate for the
case of uncertain and time-varying loads. In this paper, we
propose an architecture and a feedback controller to overcome
these limitations.
Our Main Contribution. A typical experimental realization

of many synthetic biological devices today, including the Kim−
Winfree oscillator network, is closed in the sense that once the
operation starts, we do not either add any chemicals, especially
NTP fuel, externally into the wet-lab apparatus or remove any
chemicals, especially waste products, from the apparatus.
Within the closed system, the oscillations are bound to die
out sooner or later; diminishing NTP fuel eventually stops
supporting the production of RNA signals and accumulating
waste products clog down the toeholds and, as a result,
adversely affect the signal propagation. Furthermore, the
oxidation effects and the pH variations tend to deactivate the
enzymes. Loading poses an additional challenge since it alters
the system dynamics, increases the system order and the
associated uncertainty. So, how should we improve the load
capacity of such transcriptional devices? We answer this
question by adopting a partially open architecture in the
sense that it is possible to inject biomolecular species externally
in the wet-lab apparatus but it is not possible to remove

biomolecular material from the appartus. In addition, we
propose a sophisticated in silico feedback controller, a block
diagram of which is illustrated in Figure 2, which is to be

coupled to the wet-lab apparatus. A light switching in silico
controller, implementing a combination of a Kalman filter and a
model predictive controller, was recently reported in ref 2. Our
controller is an 1 adaptive controller that uses a DNA/RNA
based actuation of the wet-lab apparatus.
The primary benefit of using a control theoretic approach is

due to the fact that the wet-lab system comes with a fairly
sizable uncertainty (owing to modeling simplifications and
neglected chemical reactions) and time-varying signals such as
disturbance, noise, and load (see refs 8 and 1 for details). As a
result, a rigorous use of feedback is necessary to ensure that the
performance objective is realized. Now, a number of feedback
controllers can be synthesized, H∞ controller, model predictive
controller, model reference adaptive controller, PI controller,
and so on. Indeed, a model predictive controller (combined
with a Kalman filter) has recently been used in ref 2 to regulate
in vivo gene expressions in Saccharomyces cerevisiae using a light-
based actuation. In contrast, we propose an 1 adaptive
controller and use a DNA/RNA strand based actuation that
facilitates a much greater control channel bandwidth than the
one provided by a light-based actuation. Broadly speaking, most
of the currently used adaptive controllers aim to counter
uncertainty at all possible frequencies whereas an 1 adaptive
controller aims at a much more realistic goal of countering the
uncertainty over a band of frequencies only.15 For the Kim−
Winfree oscillators, the uncertainty primarily needs to be
countered in only a small band of frequencies: specifically, up to
a few millihertz only since the period of oscillations is

Figure 1. (A) Kim−Winfree oscillator network comprises two
switches (SW12 and SW21) connected through an activator rA1 and
an inhibitor rI2 block. In ref 1, it is used to drive DNA tweezers.
Because of the loading effects and a closed-system design, this network
is unable to drive even moderate loads: the plot B (Reprinted with
permission from ref 1. Copyright 2011 National Academy of Sciences)
illustrates the loss of oscillations as the load increases from 0 nM to
2000 nM; as the plot C (Reprinted with permission from ref 1.
Copyright 2011 National Academy of Sciences) illustrates, a
mathematical analysis of a simplified model of the system shows
that the allowable region in the parameter space for the existence of
sustained oscillations diminishes as the load increases from 0 nM to
2000 nM. This highlights the need for more sophisticated controllers
and for a more open design: for example, a design in which it is
possible to inject a control input in a wet-lab setup. We propose the
synthesis of such a system and present several simulation case studies.

Figure 2. Our proposed partially open wet-lab system architecture. An
1 adaptive feedback controller is implemented inside an in silico

computer that is physically separated from the wet-lab apparatus in
which the synthetic biological system of interest is implemented. The
controller takes the fluorescence read-out of the switch states as inputs.
The controller output is the vector of the updated values of the
inhibition constant KI and the activation constant KA. The system of
interest to us, i.e., the plant, comprises a DNA tweezer load driven by a
Kim−Winfree oscillator network. Here, the reference input is a vector
whose components are the desired time-trajectories of the outputs of
interest: in our case, the outputs of interest are the concentrations of
(rA1, rI2) or (T12A2, T21A1). The fluctuating levels of rA1 and rI2 are
used to open and close the DNA tweezer either directly or through a
coupling unit. In contrast with the in silico controller architecture of ref
2 that uses a photonic actuation, we use a biomolecular actuation:
specifically, the 1 controller output controls the concentration of
DNA/RNA strands to be injected externally in the wet-lab apparatus.
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approximately 90 min. It can be proved mathematically as well
that our 1 adaptive controller ensures that the wet-lab system
exhibits oscillations that are robust over a quantifiable range of
parametric changes, loads, disturbances, and uncertainties. The
combination of dead-zone and saturation nonlinearities used by
us (see the Supporting Information text) in processing
measured biochemical concentrations has a far lower computa-
tional overhead than the one incurred by a Kalman filter used in
ref 2. Furthermore, it can be proved that in many cases an 1
adaptive controller can be approximated by a much simpler PI
controller which would further reduce the computational cost
and render the controller implementable in vitro rather than in
silico. As a result, we have opted for an 1 adaptive controller.

■ RESULTS AND DISCUSSION
System Description. The Kim−Winfree oscillator, derived

recently in ref 8 and illustrated in Figure 3, uses bacteriophage
T7 RNA polymerase (RNAP) and Escherichia coli ribonuclease
H (RNase H). Several realizations of such an oscillator network
are described in ref 8. In these synthetic transcription networks,
transcriptional switch motifs are modularly wired into
arbitrarily complex networks by changing the regulatory and
coding sequence domains of DNA templates. We focus on the
simplified models for the first two designs, viz., Design I and
Design II, of the oscillator networks presented in ref 8, and the
key elements in these networks are noted down in Table 1 and
the key biochemical reactions are noted down in Table 2.
Oscillator Network: Design I. The oscillator network is

illustrated in Figure 3,I. Each synthetic switch, denoted SW12
and SW21, is controlled by an input signal, physically, an ssRNA
strand, and produces an output signal, physically, an ssRNA
strand. The OFF state of SW12, denoted as T12, consists of a
double-stranded DNA template with an incomplete partially
single-stranded promoter for T7 RNAP and its ON state is the
complex T12A2 obtained when a single-stranded DNA activator
A2 completes the missing promoter region; T12A2 can be
transcribed well, approximately half as efficiently as a full duplex
template, likewise for the switch SW21. Note that, at the
molecular level, the input domain and the output domain are
physically separated by the promoter region such that the
independent choice of input and output sequences is

guaranteed. The switch can be turned OFF by the addition
of an inhibitor strand (either a single-stranded RNA rI2 for the
case of an inhibited switch or single-stranded DNA dI1 for the
case of an activated switch) which initiates binding at the
toehold domain of the activator strand and displaces the
activator Aj from the ON-state switch TijAj. Free-floating
inhibitor strands can also bind to complementary free-floating
activator strands to form inert activator−inhibitor complexes.
These annihilation reactions are important to establish
adjustable activation and inhibition thresholds for target
switches; the actual state change of switch templates are
delayed until all the free-floating threshold species are
consumed. Finally, the DNA activator strand A1 can be
released from the A1·dI1 complexes when RNA activator strand
rA1 displaces dI1 from A1·dI1 through toehold-mediated strand
displacement reaction. The released activator A1 is then
available to activate the switch SW21. The catalytic production
and degradation reactions are mediated by two enzymes:
RNAP and RNase H. RNAP produces RNA signals from ON-
state switches that in turn regulate the state of target switches,
while RNase H degrades RNA signals within RNA−DNA
hybrid complexes undoing the regulatory action by RNA
signals. Together, the RNA activator rA1 activates the
production of RNA inhibitor rI2 by modulating switch SW21,
whereas RNA inhibitor rI2, in turn, inhibits the production of
RNA activator rA1 by modulating switch SW12, thereby forming
a negative feedback loop. The inhibition and activation

Figure 3. (I) Design I oscillator network of ref 8 comprises two switches, SW12 and SW21, and two RNA regulatory signals, rA1 and rI2. A pointed
arrow indicates production or activation and a blunt arrow indicates inhibition. As part V illustrates, the OFF state of the switch SW12, denoted T12, is
a double-stranded DNA template with an incomplete single-stranded promoter for T7 RNAP and the ON state, denoted T12A2, is the complex
obtained when A2 completes T12; likewise for the switch SW21. (II) Design II of ref 8 has an additional switch SW11 that produces and is activated by
rA1. (III) Theoretical end-states of hybridization reactions in the absence of enzymes. As the input RNA inhibitor rI2 concentration increases, initially
the free DNA activator A2 is consumed without affecting the switch state. When all free A2 is consumed (i.e., [rI2] = [A2

tot] − [T12
tot]), rI2 displaces A2

from the T12A2 complex in stoichiometric amounts until all A2 is consumed (i.e., [rI2] = [A2
tot]), resulting in a piecewise linear graph (see Figure 1 of

ref 8). (IV) The response of the switch SW21 to the activator rA1 is piecewise linear as well. (VI) Injection of rI2 turns SW12 off, which produces rA1.
(VII) Injection of rA1 leads to the release of A1 which turns SW21 on, which produces rI2. As a result of parts VI and VII operating together,
oscillations are produced in the network.

Table 1. Notation for the Kim−Winfree Oscillator Circuit

symbol meaning

T12A2 ON state of the switch SW12

T12 OFF state of the switch SW12

T21A1 ON state of the switch SW21

T21 OFF state of the switch SW21

A1dI1, rA1dI1, A2rI2 functionally inert activator−inhibitor complex
rI2 free-floating ssRNA inhibitor
dI1 free-floating ssDNA inhibitor
rA1 free-floating ssRNA activator
A1, A2 free-floating ssDNA activator
[x] concentration of a biomolecular species x
[Tij

tot] [Tij] + [TijAj]
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thresholds can be established by adjusting the concentrations of
free-floating threshold species, which in effect, sets delays in
signal propagation. A negative feedback loop with appropriate
delays can result in sustained oscillations in the chemical
concentrations of rA1 and rI2 as well as the state of switch SW21
and SW12. The key hybridization reactions are summarized in
Table 2. Design II, illustrated in Figure 3,II, is obtained from
Design I by adding a switch SW11, which takes rA1 as its
regulatory activating input and produces rA1 as its output.
Design I and Design II: Ordinary Differential Equation

(ODE) Models. We shall first note our ODE model for Design
I; this model is derived in ref 8 and the modeling assumptions
are summarized in the Supporting Information text. Let us refer
to this model as Model I. As shown in ref 8, this system can be
represented using the following ODEs:
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where [ ] denotes the molecular concentration of a given
biomolecular entity . Let xT denote the transpose of a given
vector x. Then this model can be expressed in the form x ̇ = f (x,
u), where x ̇ = dx/dt denotes the derivative of x with respect to
time, x is a vector of the state variables, i.e., the switch states
and the activator/inhibitor concentrations, given by x = [rA1 rI2
T12A2 T21A1]

T, the control input u is given by u = [KI KA]
T, and

f(·,·) is a nonlinear function described by eqs 1−4. In the above
equations, kp represents the first-order rate constant based on
RNAP, which produces RNA outputs, while kd represents the
first-order rate constant based on RNase H, which results in the
degradation of RNA signals, τ is a relaxation time for the
hybridization reactions, KA is the activation threshold for the
RNA activator rA1, KI is the inhibition threshold for the RNA
inhibitor rI2, and [Tij

tot] is the sum of concentrations of all
molecular species containing Tij. Assuming fast and irreversible
hybridization reactions among the nucleic acid species,
reasonable approximations for the thresholds are KI ≈ [A2

tot]
− 1/2 [T12

tot] and KA ≈ [dI1
tot] − [A1

tot] + 1/2 [T21
tot], while

reasonable approximations for Hill exponents are n ≈ 4 (KI/

[T12
tot]) and m ≈ 4 (KA/[T21

tot]). Hill exponents between 3 and 6
for steady-state switch responses were measured experimentally
in ref 7. The ODE model for Design II can be obtained
similarly and is described in the Supporting Information text;
we refer to that model as Model II.

ODE Model: Accounting for the Loading Effects. Suppose
Design I of the Kim−Winfree oscillator is used to drive the
DNA tweezer by coupling rI2 to the load L (see the inset “in
vitro or in vivo system” of Figure 2). Here, rI2 binds to L to form
an active complex La as per rI2 + L→ La. The active complex La

degrades back into L as per La → L if rI2 is fully consumed and
as per La → rI2 + L if rI2 is not consumed fully. Let us assume
that [Ltot] = [L] + [La] remains constant. We assume that the
active load and the total load, i.e., [La] and [Ltot] are measured
real-time, e.g., by fluorophore and quencher labels on DNA
tweezer (see ref 1). The case of Design II driving a DNA
tweezer load can be treated on the same lines. Both models
have been described in detail in ref 1 and are summarized in the
Supporting Information text. Briefly speaking, if Design I is
coupled to the DNA tweezer, then its dynamics get altered as
follows: eq 2 gets replaced by eq S.8 in the Supporting
Information text; likewise, a similar adjustment is to be made
for the case of Design II coupled to the DNA tweezer.

ODE Model: Accounting for Enzyme Deactivation, Waste
Product Build-Up, Disturbances, and Modeling Uncertain-
ties. With the enzyme deactivation, the strengths of activation
and inhibition decrease, i.e., the values of kp, kd, and the Hill
coefficients n and m decrease. With the waste products building
up, the binding rates decrease since the waste products have a
tendency to bind to the toeholds and hence, effectively, the
signal propagation degrades and the value of the time constant
τ increases. The disturbances arise primarily due to temperature
changes, pH changes, and oxidation effects. The temperature
changes affect the binding rates and hence alter the value of τ.
The buffer exhaustion tends to make the system more acidic
with time and hence leads to enzyme deactivation and thereby
decreases the values of kp, kd, n, and m. The oxidation effects
lead to enzyme deactivation and hence alter the values of kp, kd,
n, and m. The modeling uncertainty arises due to poorly
characterized reaction rates and neglected chemical reactions.
We account for those effects by adding a norm-bounded
additive term to the ODEs describing the time-evolution of all
state variables. The limitations imposed by NTP fuel exhaustion
do not necessarily apply since we adopt a partially open
architecture in which it is possible to inject chemicals into the
wet-lab system.
We assume that the switch states, [rA1] and [rI2] are

measured real-time with minimal measurement errors. We
further assume that the nominal values of the enzyme constants
kp and kd, and the binding constants kr and kf are known and
that their degradation with time occurs exponentially; the
constants kp and kd have already been described whereas the

Table 2. Key Chemical Reactions in the Kim−Winfree Oscillator (See Reference 8)

activation annihilation RNAP

T21 + A1 → T21A1 A1 + dI1 → A1dI1 T21A1 → T21A1 + rI2
T12 + A2 → T12A2 rA1 + dI1 → rA1dI1 T21 → T21 + rI2

A2 + rI2 → A2rI2 T12A2 → T12A2 + rA1

T12 → T12 + rA1

inhibition release RNase H

T21A1 + dI1 → T21 + A1dI1 A1dI1 + rA1 → rA1dI1 + A1 rA1dI1 → dI1
T12A2 + rI2 → T12 + A2rI2 A2rI2 → A2
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constants kr and kf are described in the Supporting Information
text in the context of a DNA tweezer load. A rationale for the
exponential decay assumption comes from the fact that a time-
independent death process is an approximation for the decay in
the enzyme activity: as noted in ref 16, T7 RNAP exhibits poor
catalytic stability in dilute systems which can be reasonably
approximated as an exponential decay function. It should be
noted though that our controller synthesis procedure is not
sensitive to whether the decay is exponential or not. All
modeling uncertainties (caused, in part, by neglecting some
chemical reactions) are lumped together into the norm-
bounded time-varying signals δi, and we set the bound on δi
heuristically. Such a model of Design I driving a DNA tweezer
is described in detail in the Supporting Information text.
Description of the in Silico Controller. Our in silico

controller, mentioned in Figure 2 and described in detail in
Figure 4, monitors [TijAj], [rA1], and [rI2] using fluorescence

read-outs and controls the parameters KI and KA by injecting
the threshold species A1 and A2 and their complements into the
wet-lab system. It is straightforward to monitor the switch
states by using fluorophore labels on switch templates T12 and
T21 and quenchers on the activators A1 and A2: this allows real-
time tracking of switch states as fluorescence read-out.8 Hence,
it is possible to design a feedback control system that can
generate user-defined dynamics by monitoring switch states in
real-time, calculating the deviations from the desired

trajectories, and sending control inputs, Aj for positive inputs
and its complement A̅j for negative inputs, such that the switch
states converge toward reference signals. To overcome the
limitations of closed systems and to allow real-time fine-tuning
of control inputs, we will assume a partially open architecture
wherein inputs can be added with minimal volume change for
the biochemical system under investigation. The feasibility of
this approach was underscored in ref 7 wherein experimental
perturbation of a two-switch network using activators and their
complements as control inputs moved the network from a
bistable parameter regime to a monostable regime and back.
We now describe how the controller is synthesized to achieve

the following objective.
Objective: Ensure that the Kim−Winfree oscillators coupled

to a variable load DNA tweezer exhibit the frequency of 0.001
rad/s and the amplitude of 40 nM around the baseline of 50
nM in T12A2 and T21A1 with the phase difference of π/4 rad.
Note that, typically, the Kim−Winfree oscillators have a time

period of approximately 2 h (see Figure 3A of ref 8). So,
realizing the above objective will also ensure that the Kim−
Winfree oscillators behave similar to the experimental results.
Since we use an advanced control theoretic approach to achieve
this objective, we now briefly explain the basic controls
concepts in the context of the Kim−Winfree oscillator.

Control Systems: Concepts and Terminology. Effectively, a
controller is a black box that consumes controller inputs to
produce controller outputs that are given as an input to the
plant, i.e., the system that needs to be controlled; in this case,
the plant is the Kim−Winfree oscillator operating either in
isolation or under the load of a DNA tweezer. Here, the
controller inputs are as follows: (I) reference input, the vector r
of the desired oscillation waveforms for T12A2 and T21A1 and
(II) measured plant output, the vector x of the fluorescence
read-outs of all state variables (e.g., T12A2, T21A1, rI2, and rA1
are the state variables for the case of an isolated Model I while
T12A2, T21A1, rI2, rA1, and La are the state variables for the case
of Model I driving a DNA tweezer).
The controller output u is the vector [KI KA] comprising the

inhibition and activation constants. The controller objective is
that, in the face of modeling uncertainties due to neglected
chemical reactions, time-varying parameters, and poorly
modeled kinetics, the following is ensured: (1) T12A2 and
T21A1 reliably track their respective reference signals, and (2)
the exogenous disturbances (due to thermal noise, enzyme
deactivation, and waste product build up) are satisfactorily
rejected.
A given system is termed static if its instantaneous output

depends on its instantaneous input only. For example, logic
gates such as the AND gate, the OR gate, and the XOR gate are
static systems. A given system is termed dynamic if its
instantaneous output depends on the values of the input at
other time instants as well. For example, a linear system that
takes the input u and generates the output y as per the
differential eq 5 is a dynamic system:

= − +
y
t

y u
d
d

10
(5)

A linear dynamic system, say H, is often expressed using its
Laplace transform H(s) since the Laplace transform well
characterizes the frequency domain properties of linear systems.
For example, the linear dynamic system H given by eq 5 is a
low-pass filter and its Laplace transform is given as H(s) =
Y(s)/U(s) = 1/(s + 10). This system is a low-pass filter since,

Figure 4. Our adaptive controller is implemented in silico in a
computer outside the wet-lab apparatus and is then interfaced with the
wet-lab apparatus. The controller takes the fluorescence read-out of
the switch states as inputs. The controller output is the vector of the
updated values of KI and KA. (I) Our 1 adaptive controller
architecture. The block N.I. performs the nonlinearity inversion to
generate the control inputs KI and KA; the nonlinearity inverted is the
Hill-type activation/inhibition nonlinearity that exists due to the
inhibition of T12A2 by rI2 and the activation of T21A1 by rA1. This, in
effect, allows us to work with a linear plant model: e.g., the virtual
control input v1 = 1/(1 + ([rI2]/KI)

n) inverts the inhibition
nonlinearity and renders eq 3 as well as eq S.3 in the Supporting
Information text linear in v1. The linear plant model is either Model I
or Model II, depending on which Kim−Winfree oscillator design is
used, with the nonlinearity removed like so. Here, r is the vector of the
reference inputs that T12A2 and T21A1 are to track. We chose the filter
C(s) by trial and error. (II) Each of the diagonal Ni nonlinearities is a
combination of dead-zone and saturation nonlinearities; the non-
linearities Ni are used to ensure stability and to reduce the controller
chattering.
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roughly speaking, it attenuates all frequencies greater than 10
rad/s but does not attenuate any other frequency.
Synthesis of Our 1 Adaptive Controllers. In the

Supporting Information text, an overview of an 1 adaptive
controller synthesis for the generic case of controlling a plant
featuring uncertain parameters is given, along with the details of
how our 1 adaptive controller, illustrated in Figure 4,i, is
synthesized. Here, we summarize the salient points. First
consider Design I operating in isolation sans any modeling
uncertainty, waste product build up, and enzyme deactivation,
this model is described by eqs 1−4. Let r1 denote the reference
input for T21A1 and r2 denote the reference input for T12A2.
Then our reference input r is the vector [r1 r2]

T where r1(t) =
0.05 + 0.04 sin (0.001t), r2(t) = 0.05 + 0.04 sin (0.001t + π/4),
where the units are in micromolar. The plant features a Hill-
type saturation nonlinearities due to the inhibitory effect of rI2
on T12A2 and the activating effect of rA1 on T21A1. Since, by
assumption, we can measure rA1 and rI2 and know KI and KA
precisely, we can invert this nonlinearity using a virtual
controller: e.g., the virtual control input v1 = 1/(1 + ([rI2]/
KI)

n) inverts the inhibition nonlinearity and renders eq 3 as
well as eq S.3 of the Supporting Information text linear in v1.
Then, the virtual control input v2 = 1−1/(1 + ([rA1]/KA)

m)
inverts the activation nonlinearity and renders the equations
describing the evolution of T12A2 and T21A1 linear (see the
Supporting Information text). This allows us to use a linear
dynamical system as our reference system and simplifies the
synthesis procedure. The virtual control inputs are obtained by
filtering the difference of the desired state ri and the estimated
parameter η̂i using a suitable filter C(s), which we choose on a
trial and error basis; the bandwidth of C(s) is chosen to be
larger than 1.6 mHz, the reference signal frequency, so that a
perfect robustness to the uncertainties and disturbances in the
frequency range of interest, i.e., [0 mHz, 1.6 mHz], is achieved.

In the following simulation results, unless otherwise specified,
the parameter adaption law is chosen as the nonlinearity Ni
illustrated in Figure 4,ii and has the parameters Δσ = 10, dzϵσ =
0.000 01 while the lowpass filter C(s) is chosen as C(s) = ((1/
(30s + 1))(1/(20s + 1))(1/(10s + 1))).
As chosen in ref 8, we set the nominal system parameter

values as follows: kp = 0.04/s, kd = 0.002/s, τ = 500 s, n = m = 5,
[T12

tot] = [T21
tot] = [A1

tot] = 100 nM, KA = KI = 1 μM. We set the
initial condition of the plant to x(0) = [0.1 0.1 0.1 0.1]T and of
the state predictor to x ̂(0) = [0.1 0.1]T. In other words, the
Kim−Winfree oscillator network is initialized to rA1(0) = 0.1
μM, rI2(0) = 0.1 μM, T12A2(0) = 0.1 μM, T21A1(0) = 0.1 μM.

Simulation Scenarios. The simulation results are obtained
for two separate cases: (1) the feedback controller included
with the parameter update law turned OFF (this facilitates only
a partial benefit of our 1 adaptive controller) and (2) the
feedback controller included with the parameter update law
turned ON (this facilitates the full benefit of our 1 adaptive
controller). We do not present the simulation plots for the case
of the free running closed system, i.e., without an in silico
feedback controller since, as expected, these do not exhibit
robust and sustainable oscillations: all the same, these plots are
presented for Scenario 4 (see Figure 9,i).

• Scenario 1: Nominal system of Design I, i.e., the system
Design I with no uncertainty.

• Scenario 2: Nominal system of Design II, i.e., the system
Design II with no uncertainty.

• Scenario 3: In real-world, the wet-lab system does
exhibit uncertainty due to poor modeling, enzyme
deactivations, waste product build up, etc. The model
described in this scenario aims to account for it. It
corresponds to the case wherein (1) the enzyme
deactivations and the waste product build up have
effectively slowed down the chemical reactions so that

Figure 5. Simulation results for Scenario 1. Here, the parameter adaptation part of the 1-adaptive controller is turned OFF since there is no need
for the adaptation. As the subplot I illustrates, the thresholds KI and KA are periodic. The subplot II illustrates that the desired oscillations are
synthesized in the switch outputs T12A2 and T21A1.

Figure 6. Simulation results for Scenario 2. Here, the parameter adaptation part of the 1-adaptive controller is turned OFF since there is no need
for the adaptation. As the subplot I illustrates, the thresholds KI and KA are periodic. The subplot II illustrates that the desired oscillations are
synthesized in the switch outputs T12A2 and T21A1.
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the time constant τ has increased from its nominal value
500 to 600 s, and furthermore, (2) we have under-
estimated [T12

tot] and overestimated [T21
tot] on an a priori

basis. This is quantified as τ = 600 s, [T12
tot] = 0.11 μM,

[T21
tot] = 0.095 μM.

• Scenario 4: Nominal system of Design I driving a
constant DNA tweezer load of L = 1000 nM. Here, α =
0.76 μM, Ltot = 1 μM, kr = 0.006/s, and kf = 7900/M/s.

• Scenario 5: Nominal system of Design I driving a time-
varying DNA tweezer load of L = 1000 + 10 sin(0.001t)
nM.

• Scenario 6: Nominal system of Design I speeded up by a
factor of 5 to have the frequency of oscillations as 1 mHz.

• Scenario 7: Nominal system of Design I speeded up by a
factor of 100 to have the frequency of oscillations as 20
mHz.

Simulation Results for Design I and Design II in Isolation.
Since Scenario 1 and Scenario 2 concern the ideal case in which
the system exhibits no uncertainty, there is no need to use

parameter adaptation in the feedback controller. Indeed, as
illustrated in Figures 5 and 6, our 1 controller is able to
produce sustained oscillations in this scenario with its
parameter update law turned OFF. If the adaptation law is
turned OFF, then the 1 adaptive controller is not very
effective against the parametric uncertainty as the simulation
plots in Figure 7 illustrate. However, if the adaptation law is
turned ON, then the 1 adaptive controller compensates for
the uncertainty quite well as the simulation plots in Figure 8
illustrate.

Simulation Results for Design I Driving DNA Tweezer. We
next consider the case of Design I driving a DNA tweezer for
different values of the load L (viz., a constant load of L = 1000
nM and a time-varying load) in the presence of enzyme
deactivation, NTP fuel exhaustion, and waste product build-up.
The plant model is described in the Supporting Information
text; here, the binding constants are kr = 0.006/s and kf = 7900/
M/s. As the simulation results in Figure 9 illustrate, the Kim−
Winfree oscillator under our 1 adaptive controller is able to

Figure 7. Simulation results for Scenario 3 with the parameter adaptation part of the 1-adaptive controller turned OFF. Now, the feedback
controller is not very effective at compensating for the uncertainty as plots I and II illustrate. As the subplot II illustrates, the amplitudes of
oscillations in T12A2 and T21A1 differ from each other.

Figure 8. Simulation results for Scenario 3 with the parameter adaptation part of the 1-adaptive controller turned ON. Now, the feedback
controller is effective at compensating for the uncertainty as plots I and II illustrate. As the subplot I illustrates, the thresholds KI and KA are periodic.
The subplot II illustrates that the desired oscillations are synthesized in the switch outputs T12A2 and T21A1.

Figure 9. Simulation results for Scenario 4 and Scenario 5. (I) Scenario 4, if the 1 adaptive controller is not used then the free running system fails
to generate any oscillations at all; this has been observed experimentally as well for high load cases (see ref 1). (II) However, if the 1 adaptive
controller is used, then the desired oscillations are obtained even for the time-varying load considered in Scenario 5.
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produce the desired oscillations on a sustained basis if the
parameter update law is turned ON.
Speeding Up the Kim−Winfree Oscillator. For a variety of

reasons, synthetic biological oscillators having a high frequency
of oscillations are desirable. The frequency of oscillations in the
Kim−Winfree oscillators, like many synthetic biological
oscillators of today, is fairly low at 0.2 mHz. Our simulation
results presented thus far show that our 1 adaptive controller
can speed it up by a factor of 5 to 1 mHz (see Figure 10). This
prompts the question: can we speed it up even further? It turns
out that our controller is able to speed it up by a factor of 20
but runs into problems when the speed-up factor exceeds 100.
However, if a greater speed-up is required then the nonlinearity
to be inverted clips the saturation limits of the 1 adaptive
controller and, as a result, the speed-up is achieved at the cost
of the amplitude of the oscillations, which gets reduced by a
factor of 4 (see Figure 11).
Potential Applications. In vitro synthetic biology approaches

allow researchers to directly access and manipulate biomo-
lecular parts without the overwhelming complexity and
intertwined dependencies within in vivo cellular circuits.17

Cell-free transcription and translation machineries can be
encapsulated in lipid vesicles as a prototype for an artificial
cell18 and could be used to drive complex logic functions and
cascades.19 Recently, a 40-kbp long T7 phage genome with 60
genes was shown to be efficiently replicated in a cell extract,20

resulting in a functional T7 phage produced in a completely
cell-free environment. Furthermore, beyond simple illustrations
of operating principles for nanomachines, the ability to control
molecules at nanoscales could have applications in diverse
technological areas. A straightforward and immediately
realizable goal is interfacing with DNA-based structural
motifs.21,22 To illustrate the possibility of DNA structural

motifs for drug-delivery nanovehicles for therapeutics, a DNA-
based box was assembled with a lid that could be opened by
strand displacement with a specific oligonucleotide key.23

Therefore, these DNA-based nanostructures can be pro-
grammed to be responsive to external inputs to deliver their
toxic cargoes in a specific fashion, while increasing the
effectiveness of therapeutic action by surface display of the
appropriate ligands.24 A successful development for controlled
molecular clocks can open the possibility of rendering these
DNA-based nanostructures time-responsive.

■ CONCLUSION

Synthetic biology is growing as an expansion of the traditional
biology discipline from natural organisms toward potential
organisms.25 Hence, making biological systems engineerable is
a goal of engineers in the field of synthetic biology. Many
technical and fundamental obstacles remain before the
construction of synthetic biological systems can become
routine. Because of the modular nature and programmable
connectivity, DNA-based circuits operating in a simple in vitro
environment offers a promising testbed for engineering
biochemical systems. In ref 8, Kim and Winfree explored the
DNA-based network for a wide range of parameters that
resulted in an oscillatory response. However, these oscillations
damp out eventually due to the limitations of closed systems. In
particular, one of the experimental difficulty was the
accumulation of short degradation products, which induced
slow-down of oscillation periods and damping of oscillations.
Detailed mechanistic modeling was also performed in ref 8 to
gain a better understanding of the underlying biochemical
system so that an appropriate controller to ensure the
oscillations could be developed in a systematic manner.
However, the progress on it has stalled since these detailed

Figure 10. Simulation results for Scenario 6. Here, the reference signals are chosen to be r1(t) = 0.05 + 0.04 sin(0.005t) μM, r2(t) = 0.05 + 0.04
sin(0.005t + π/4) μM. If the parameter adaptation part of the 1-adaptive controller is turned ON, the feedback controller is effective at speeding up
the oscillator by a factor of 5 as plot II illustrates, albeit the amplitude of oscillations has decreased by a factor of 2.

Figure 11. Simulation results for Scenario 7. Here, the reference signals are chosen to be r1(t) = 0.05 + 0.04 sin(0.1t) μM, r2(t) = 0.05 + 0.04 sin(0.1t
+ π/4) μM. If the parameter adaptation part of the 1-adaptive controller is turned ON, the feedback controller is not effective at speeding up the
oscillator by a factor of 100 as plot II illustrates: even though T12A2 and T21A1 have the desired frequency of oscillations, the amplitude of oscillations
is much smaller than the desired amplitude.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb5000675 | ACS Synth. Biol. 2014, 3, 617−626624



models are difficult to analyze owing to a surplus of
nonlinearity and uncertainty. In a subsequent work,1 the two-
switch oscillator was connected to various downstream load
processes, showing different extents of the system sensitivity
depending on the amount of load processes and the mode of
coupling. In this work, a partially open architecture was used to
overcome the limitation of the closed systems and to allow real-
time insertion of reference signals. This would allow a more
predictable system behavior with robust and sustained
oscillations, making the proposed simple ODE model as a
reasonable description of the oscillator network. In this paper,
we have shown that a partially open architecture in which an 1
adaptive controller, implemented in an in silico controller, is
coupled to the wet-lab apparatus through a biomolecular
actuation imparts tunability and robustness to the simplified
models of Design I and Design II of the Kim−Winfree
oscillator networks. The feedback controller is used to ensure
that (1) the system tracks the reference command satisfactorily
and (2) rejects the modeling uncertainties and exogenous
disturbances satisfactorily. It may be noted that an open
architecture such as a microchemostat platform26 can relieve an
important constraint imposed by waste build-up; however, the
open architecture by itself cannot impart robustness to
exogenous disturbances such as loading of circuits. As our
simulation results illustrate, this approach ensures robustness to
modeling uncertainties (e.g., due to unmodeled or neglected
biomolecular reactions), time-varying parameters, and time-
constants (e.g., because of enzyme deactivation, NTP fuel
exhaustion, and waste product build up), and exogenous
disturbances (e.g., thermal noise, uncertainty in DNA strand
binding, etc.) and, furthermore, improves the loading capacity.
We have illustrated this for two applications: (1) the Kim−
Winfree oscillator network operating in isolation and (2) the
Kim−Winfree oscillator network driving a DNA tweezer as a
variable load. We have presented simulation results for the case
of the in silico controller driving ODE models of these
applications and will shortly present the results for the in silico
controller driving the true wet-lab system. This approach can be
easily adopted to improve the robustness, tunability, and
loading capacity of a wide range of synthetic biological devices.
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Shih, W. M. (2009) Self-assembly of DNA into nanoscale three-
dimensional shapes. Nature 459, 414−418.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb5000675 | ACS Synth. Biol. 2014, 3, 617−626625

http://pubs.acs.org
mailto:vvk215@gmail.com


(23) Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani,
R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L.,
Pedersen, J. S., Birkedal, V., Besenbacher, F., Gothelf, K. V., and Kjems,
J. (2009) Self-assembly of a nanoscale DNA box with a controllable
lid. Nature 459, 73−76.
(24) Douglas, S. M., Bachelet, I., and Church, G. M. (2012) A logic-
gated nanorobot for targeted transport of molecular payloads. Science
335, 831−834.
(25) Elowitz, M., and Lim, W. A. (2010) Build life to understand it.
Nature 468, 889−890.
(26) Balagadde, F. K., You, L., Hansen, C. L., Arnold, F. H., and
Quake, S. R. (2005) Long-term monitoring of bacteria undergoing
programmed population control in a microchemostat. Science 309,
137−140.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb5000675 | ACS Synth. Biol. 2014, 3, 617−626626


